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COMPUTATION OF LARGE-SCALE STRUCTURE JET NOISE
SOURCES WITH WEAK NONLINEAR EFFECTS

USING LINEAR EULER

∗ Hixon†

University of Toledo

Cleveland, OH 44135
Toledo, OH 43606

Reda R. Mankbadi‡

Embry-Riddle Aeronautical University
Daytona Beach, FL 32114

ABSTRACT
An approximate technique is presented for the prediction of
the large-scale turbulent structure sound source in a super-
sonic jet. A linearized Euler equations code is used to solve
for the flow disturbances within and near a jet with a given
mean flow. Assuming a normal mode composition for the
wave-like disturbances, the linear radial profiles are used in
an integration of the Navier-Stokes equations. This results
in a set of ordinary differential equations representing the
weakly nonlinear self-interactions of the modes along with
their interaction with the mean flow. Solutions are then
used to correct the amplitude of the disturbances that rep-
resent the source of large-scale turbulent structure sound in
the jet.

INTRODUCTION
While considerable progress has been made over the last

decade toward the prediction of jet noise, an efficient tool
for the prediction of jet noise in practical geometries is
still lacking. The problem can be split into the predic-
tion of the source field and the prediction of the acoustic
field associated with it. As for the latter, there are now a
number of schemes that can successfully predict the acous-
tic field associated with a well-prescribed sound source.
In the acoustic analogy approach, time-average correla-
tions can be used to construct the acoustic source.1 This
source is used in a volume integration to obtain the acous-
tic field. An implementation of this approach is described
by Khavaran2 where the statistical properties of the noise
sources are described by two-point, space-time correlation
models derived from RANS solutions for the flow field us-
ing k-ε turbulence models. An alternative approach was
recently developed by Tam & Auriault3 where models for
the two-point correlations are given in a fixed reference
frame, rather than the moving reference frame commonly
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used in previous approaches. In both of these approaches,
it is the fine-scale turbulence that is modeled as the source
of noise.

Strong evidence suggests that jet noise, particularly in
the supersonic regime, has contributions from large-scale
turbulent or wave-like structures in the initial region in the
jet and can be the dominant noise source. These struc-
tures cannot be captured by classical turbulence modeling.
Direct Numerical Simulations (DNS) and Large Eddy Sim-
ulations (LES) can successfully capture these structures,
but they are computationally intensive.

Large-Eddy Simulations (LES) is the most promising
approach for prediction of the noise source. The resolu-
tion in LES involving the acoustic field is usually selected
such that all the acoustically relevant scales are resolved.
In principal, LES can be extended to resolve all the scales
as in DNS by making the resolution equivalent to that of
DNS. At the other end, the computations can be made less
CPU intensive by selecting a coarse mesh, and resolving
only the very-large scales (VLES). Although VLES may
be less CPU intensive compared to LES, still there is an
obvious need to develop an approximate, but fast approach
for prediction of jet noise.

The work presented herein focuses on predicting the
noise source associated with the large-scale, low frequency
noise. This work, along with a parallel work for prediction
of the small-scale noise, should provide a practical tool for
prediction of jet noise associated with both the small and
large scales. The basic idea herein is to first neglect non-
linearity and use a Linearized Euler Equations (LEE) code
to predict the time-dependent source in a given mean flow.
Nonlinear effects are then accounted for via a nonlinear in-
tegral technique similar to that of Dahl & Mankbadi.4

The starting point of this analysis is that we consider
a turbulent round jet at a sufficiently high speed so that
the compressibility is significant. The development of this
jet in the unexcited case is assumed to be given by some
other means (e.g. analytically or via Reynolds averaged
numerical simulations). This jet is then excited by a single-
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frequency instability wave. The nonlinear development of
this wave will be presented herein based on the integral
energy approach. Along with the wave development, the
mean flow-spreading rate is also modified. Since the fo-
cus here is the supersonic jet, we must consider the helical
modes as they are more amplified than the axisymmetric
ones. Once the computations are completed, a description
of all the variables of the large-structure disturbance field in
and near the jet is given for a particular mode number and
frequency. It can be used as the acoustic source to compute
the noise radiation field outside of the jet. This is described
in a separate paper.5

In the next section, we describe the LEE method used to
compute the large-scale turbulent disturbances. The advan-
tage of this approach is that it allows the base mean flow to
be non-parallel. This has the consequence that the numer-
ical singularities, present in the previous locally-parallel
stability analysis,4 are eliminated. The development of the
integral energy equations is described in the following two
sections. Finally, results are shown for the nonlinear calcu-
lations showing the effects of dissipation, initial large-scale
structure amplitude, and jet Mach number on the spatial
evolution of the amplitude and phase of the structure.

LINEARIZED EULER EQUATIONS
Consider a high-Reynolds number turbulent jet issuing

from a nozzle of diameter D in a still air. The jet is
shock-free, but the Mach number is high enough for com-
pressibility effects to be significant. The density and the
component velocities are normalized by the jet exit density
and axial velocity at the centerline, ρj and Uj , respectively.
The pressure is normalized by ρjU2

j , time by D/Uj , and
spatial coordinates by D. Each flow parameter is split
into a time-averaged partU i(x, r, φ) and a disturbance part,
u′i(x, r, φ, t). Thus, the velocity can be written :

ui = U i(x, r, φ) + u′i(x, r, φ, t) (1)

where i = 1, 2, 3. In the cylindrical coordinates, 1 refers
to the axial direction x with axial velocity u, 2 refers to the
radial direction r with radial velocity v, and 3 refers to the
azimuthal direction φ with azimuthal velocity w. An over
bar, ( ), denotes a time-averaged quantity. The pressure
and the density are similarly split:

p = P (x, r, φ) + p′(x, r, φ, t) (2)

ρ = ρ(x, r, φ) + ρ′(x, r, φ, t) (3)

For the product of the density with the velocities, we get

ρui = (ρ+ ρ′)(U i + u′i) = ρU i + ρ u′i + ρ′ U i + ρ′u′i

Time-averaging yields

ρui = ρU i + ρ′u′i (4)

and we define

ρ̃ui ≡ ρui − ρui = ρ u′i + ρ′ U i + ρ′u′i − ρ′u′i. (5)

Thus, we get
ρui = ρui + ρ̃ui. (6)

Starting from the full Navier-Stokes equations in conser-
vative form, we neglect viscosity, linearize about a given
mean flow and separate the disturbance variables into az-
imuthal modes by assuming the presence of an exp(inφ)
factor in each variable. The resulting Linearized Euler
equations may be written in cylindrical coordinates as fol-
lows:

(rQ)t + (rF )x + (rG)r + inH = S (7)

where n is the azimuthal mode number and the vector quan-
tities are:

Q =
[
ρ′ ρ̃v ρ̃w ρ̃u e′

]T

F =




ρ̃u
−ρ′V U + ρ̃v U + ρ̃u V
−ρ′W U + ρ̃w U + ρ̃uW
−ρ′U U + 2ρ̃uU + p′

U(p′ + e′) + (ρ̃u− ρ′U)

(
P +E
ρ

)




G =




ρ̃v
−ρ′V V + 2ρ̃v V + p′

−ρ′V W + ρ̃w V + ρ̃v W
−ρ′V U + ρ̃u V + ρ̃v U

V (p′ + e′) + (ρ̃v − ρ′V )

(
P +E
ρ

)




H =




ρ̃w
−ρ′V W + ρ̃v W + ρ̃w V
−ρ′W W + 2ρ̃wW + p′

−ρ′U W + ρ̃uW + ρ̃w U

W (p′ + e′) + (ρ̃w − ρ′W )

(
P +E
ρ

)




S =




0
−ρ′W W + 2ρ̃wW + p′

ρ′V W − ρ̃w V − ρ̃v W
0
0




where the mean and the disturbance pressures are given by

P = (γ − 1)

[
E −

1

2
ρ(U

2
+ V

2
+W

2
)

]

p′ = (γ − 1)

[
e′ − (ρ̃uU + ρ̃v V + ρ̃wW )

+
1

2
ρ′(U

2
+ V

2
+W

2
)

]
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E is the mean total energy and e′ is the energy disturbance
variable. In developing the Linearized Euler equations,
only the linear terms of equation (5) for ρ̃ui are retained.

In this formulation, each additional mode calculated
adds another set of equations to be solved. The advantages
to this formulation are lowered storage and computation,
improved centerline behavior, and improved boundary con-
dition specification.

Numerical algorithm
The code uses an explicit time-marching method coupled

with central differences in space. To eliminate spurious
high-wavenumber oscillations, artificial dissipation is em-
ployed. For computational efficiency and maximum com-
piler optimization, the code is written in FORTRAN 77.

The time marching method is a low-storage, fourth-order
extension of an optimized LDDRK 5-6 method.6, 7 For ac-
curate spatial differencing, the 7-point DRP method of Tam
& Webb is used.8 For artificial viscosity, an explicit 10th
order dissipation is used.9

Computational grid
The grid used for the cases computed for this paper

had 171 (radial) x 251 (axial) grid points. In the radial
direction, the grid started with the minimum spacing of
∆r/D = 0.02 at the centerline and smoothly stretching
to 0.15 at r/D = 16. In the axial direction, the minimum
spacing was ∆x/D = 0.02 at the x = 0 boundary and
smoothly stretching to 0.15 at the x/D = 35 boundary.
The maximum spacing corresponds to 10 points per wave-
length, which is well within the accuracy range of this code.
All cases used the same computational grid. A Courant
number of 1.4 was used for these computations.

Boundary conditions
Special attention is given to the boundary treatment in or-

der to avoid non-physical oscillations, which can render the
computed unsteady solution unacceptable. Several bound-
ary treatments were considered. The boundary treatments
follow that of Mankbadi et al.10 At the inflow, Thompson,
non-reflecting boundary treatment is implemented. The
conventional acoustic radiation condition is applied at the
radiation boundaries, which are defined at inflow, x = 0,
where r/D > 2, and at the outflow, x = xmax, for all ra-
dial points where the Mach number is less than 0.01. For
r = rmax, the radiation condition is applied to all x-points.
At the outflow, where the Mach number is greater than
0.01, the Tam & Webb8 asymptotic boundary treatment is
applied. In this code, the centerline boundary is represented
with a point at the centerline, and a ghost point reflected
across the centerline in the radial direction. Without az-
imuthal mode decomposition, the centerline treatment for a
three- dimensional problem is not straightforward, and was
addressed by Shih et al.11 However, using the azimuthal
mode decomposition method, the centerline boundary con-

dition becomes straightforward:

r
[
G1 G2 G3 G4 G5

]T
r=0

= 0

and

r
[
G1 G2 G3 G4 G5

]T
r=−∆r

= r
[
G1 −G2 −G3 G4 G5

]T
r=∆r

einπ

where G1 to G5 represent the five terms in the G vector in
equation (7).

Inflow disturbance
At the inflow boundary, x/D = 0, a disturbance based

on the linear stability eigenmodes for the inflow jet profile
is introduced:

Q = LQ(r)eiωt

where LQ(r) represents the radial eigenvector of the linear
stability wave for the set of disturbance variables. To in-
troduce the input disturbance into the flow field, the time
derivatives of the disturbance are added to the computed
flow variables at each time step:

Qt,final = Qt,BC + iωLQ(r)eiωt

This boundary condition inputs the locally-parallel eigen-
function solution that is not exactly equivalent to the Euler
solution. This difference results in a transient wave near
the inflow boundary causing inaccuracies in the numerical
results.

WEAKLY NONLINEAR EFFECTS
The source predicted by LEE neglects nonlinear effects.

However, nonlinear effects seem to be important and need
to be taken into account. Dahl & Mankbadi4 developed a
nonlinear technique for the prediction of the noise source
associated with instability waves in a compressible jet.
In their work, the partial differential equations were in-
tegrated across the transverse direction assuming that the
disturbance profiles were given by the eigenfunctions of a
locally-parallel, viscous, linear stability calculation. Cer-
tain mathematical singularities that occurred within the sta-
bility equations of this approach limited its usefulness. In
addition, the integral energy equations of the previous pa-
per contain some inconsistencies that are resolved in the
presentation below. In the present work, the disturbance
variable profiles will be taken from the linear Euler solu-
tion.

Shape assumptions
In the integral energy method, the system of equations is

integrated in the radial direction using shape assumptions
for the disturbance variables. The disturbances, considered
to be the large-scale turbulent structures, are assumed to
have the form of a traveling wave. Following the work of

3NASA/TM—2003-212383



Lee & Liu,12 the waves are assumed separable into an un-
known amplitude function and a radial shape function



u′i(x, r, φ, t)
p′(x, r, φ, t)
ρ′(x, r, φ, t)


 = A(x)eiψ(x)



ûi(r)
p̂(r)
ρ̂(r)


 exp (Ψ) (8)

Ψ = −iωt+ inφ

with an axial phase function ψ(x) that also needs to be
determined. In equation (8), (ˆ) denotes the radial shape
function of the transverse coordinate r at a given location
along the jet. ûi(r), p̂(r), and ρ̂(r) are radial shapes com-
puted by the LEE code at a given axial location and at a
given n and ω. Here, n is the azimuthal wave number indi-
cating the rotation around the jet centerline. A(x) is the real
amplitude function of x and is to be determined by a non-
linear analysis. For the LEE results, the variables contain
both axial and radial information. Only radial information
is desired for the integral technique. The radial shape func-
tions are estimated at each axial location by normalizing in
the radial direction

∫
∞

0

(
|û|2 + |v̂|2 + |ŵ|2

)
r dr = 1 (9)

at each axial location.

Equations of motion
The formulation begins with the following nondimen-

sionalized continuity and momentum equations in cylindri-
cal coordinates:

ρt + (ρu)x +
1

r
[r(ρv)]r +

1

r
(ρw)φ = 0 (10)

(ρu)t +
(
ρu2 + p

)
x

(11)

+
1

r
[r (ρuv)]r +

1

r
(ρuw)φ

=
1

Re
∆u+

1

3Re
(∇ · v)x

(ρv)t + (ρuv)x (12)

+
1

r

[
r
(
p+ ρv2

)]
r
+

1

r
(ρvw)φ −

ρw2

r

=
p

r
+

1

Re

[
∆v −

1

r2
(v + 2wφ)

]
+

1

3Re
(∇ · v)r

(ρw)t + (ρuw)x (13)

+
1

r
[r (ρvw)]r +

1

r

(
p+ ρw2

)
φ

+
ρwv

r

=
1

Re

[
∆w −

1

r2
(w − 2vφ)

]
+

1

3Re

1

r
(∇ · v)φ

where the Reynolds number, Re = ρjUjD/µ, is initially
assumed to be constant. The subscripts denote differentia-
tion, the Laplacian is

∆ =
∂2

∂x2
+

1

r

∂

∂r
r
∂

∂r
+

1

r2
∂2

∂φ2

and

∇ · v =
∂u

∂x
+

1

r

∂

∂r
rv +

1

r

∂w

∂φ
.

Making substitutions from relations (1) to (6) into (10)
to (13), we get:

(ρ+ ρ′)t + (ρu+ ρ̃u)x (14)

+
1

r
[r (ρv + ρ̃v)]r +

1

r
(ρw + ρ̃w)φ = 0

(ρu+ ρ̃u)t +
[
P + p′ +

(
U + u′

)
(ρu+ ρ̃u)

]
x

+
1

r

[
r
(
V + v′

)
(ρu+ ρ̃u)

]
r

+
1

r

[(
W + w′

)
(ρu+ ρ̃u)

]
φ

(15)

=
1

Re
∆
(
U + u′

)
+

1

3Re
(∇ · V + ∇ · v′)x

(ρv + ρ̃v)t +
[(
U + u′

)
(ρv + ρ̃v)

]
x

+
1

r

[
r
(
P + p′ +

(
V + v′

)
(ρv + ρ̃v)

)]
r

+
1

r

[(
W + w′

)
(ρv + ρ̃v)

]
φ
−

1

r

(
W + w′

)
(ρw + ρ̃w)

=
1

r

(
P + p′

)
(16)

+
1

Re

[
∆
(
V + v′

)
−

1

r2

(
V + v′ + 2

(
W + w′

)
φ

)]

+
1

3Re
(∇ · V + ∇ · v′)r

(ρw + ρ̃w)t +
[(
U + u′

)
(ρw + ρ̃w)

]
x

+
1

r

[
r
(
V + v′

)
(ρw + ρ̃w)

]
r
+

1

r

(
V + v′

)
(ρw + ρ̃w)

+
1

r

[
P + p′ +

(
W + w′

)
(ρw + ρ̃w)

]
φ

(17)

=
1

Re

[
∆
(
W + w′

)
−

1

r2

(
W + w′ − 2

(
V + v′

)
φ

) ]

+
1

3Re

1

r
(∇ · V + ∇ · v′)φ

These equations will be used to derive a set of equations
governing the mean flow and a set of equations governing
the large-scale structures.
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Mean flow

The mean flow equations are obtained by time-averaging
equations (14) to (17) containing the two-component de-
composition. The continuity equation for the mean flow
is

(ρu)x +
1

r
[r (ρv)]r +

1

r
(ρw)φ = 0 (18)

and the three momentum equations for the mean flow are:
(
ρuU + u′ρ̃u+ P

)
x

+
1

r

[
r
(
ρuV + v′ρ̃u

)]
r

(19)

+
1

r

(
ρuW + w′ρ̃u

)
φ

=
1

Re
∆U +

1

3Re
(∇ · V )x

(
ρv U + u′ρ̃v

)
x

+
1

r

[
r
(
ρv V + v′ρ̃v + P

)]
r

+
1

r

(
ρvW + w′ρ̃v

)
φ
−

1

r

(
ρwW + w′ρ̃w

)

=
1

r
P +

1

Re

[
∆V −

1

r2
(
V + 2Wφ

)]
(20)

+
1

3Re
(∇ · V )r

(
ρwU + u′ρ̃w

)
x

+
1

r

[
r
(
ρw V + v′ρ̃w

)]
r

(21)

+
1

r

(
ρwW + w′ρ̃w + P

)
φ

+
1

r

(
ρw V + v′ρ̃w

)

=
1

Re

[
∆W −

1

r2
(
W − 2V φ

)]
+

1

3Re

1

r
(∇ · V )φ.

Large-scale structure

The equations governing the large-scale structures are
obtained by subtracting the mean flow equations, (18) to
(21), from equations (14) to (17). The continuity and mo-
mentum equations for the large-scale structures are:

ρ′t + ρ̃ux +
1

r
(rρ̃v)r +

1

r
ρ̃wφ = 0 (22)

ρ̃ut +
(
p′ + ρuu′ + ρ̃u U + ρ̃u u′ − ρ̃u u′

)
x

+
1

r

[
r
(
ρu v′ + ρ̃u V + ρ̃u v′ − ρ̃u v′

)]
r

+
1

r

(
ρuw′ + ρ̃u W + ρ̃uw′ − ρ̃uw′

)
φ

=
1

Re
∆u′ +

1

3Re
(∇ · v′)x (23)

ρ̃vt +
(
ρv u′ + ρ̃v U + ρ̃v u′ − ρ̃v u′

)
x

+
1

r

[
r
(
p′ + ρv v′ + ρ̃v V + ρ̃v v′ − ρ̃v v′

)]
r

+
1

r

(
ρv w′ + ρ̃v W + ρ̃v w′ − ρ̃uw′

)
φ

−
1

r

(
ρww′ + ρ̃w W + ρ̃w w′ − ρ̃w w′

)

=
1

r
p′ +

1

Re

[
∆v′ −

1

r2
(
v′ + 2w′

φ

)]
(24)

+
1

3Re
(∇ · v′)r

ρ̃wt +
(
ρw u′ + ρ̃w U + ρ̃w u′ − ρ̃w u′

)
x

+
1

r

[
r
(
ρw v′ + ρ̃w V + ρ̃w v′ − ρ̃w v′

)]
r

+
1

r

(
p′ + ρww′ + ρ̃w W + ρ̃w w′ − ρ̃w w′

)
φ

+
1

r

(
ρw v′ + ρ̃w V + ρ̃w v′ − ρ̃w v′

)

=
1

Re

[
∆w′ −

1

r2
(
w′ − 2v′φ

)]
(25)

+
1

3Re

1

r
(∇ · v′)φ

Kinetic energy equations

Mean flow kinetic energy equation

The mean flow kinetic energy equation is obtained by
first multiplying the x-momentum equation (19) by U , the
r-momentum equation (20) by V , and the φ-momentum
equation (21) by W . Then, the resulting equations are
added together. After much manipulation, using the mean

flow continuity equation, and defining K = (U
2

+ V
2

+

W
2
)/2, the combined equation is rearranged to obtain the

kinetic energy equation for the mean flow

∂

∂x

(
ρuK + ρ̃u u′ U + ρ̃u v′ V + ρ̃uw′ W

)

+
1

r

∂

∂r

[
r
(
ρvK + ρ̃v u′ U + ρ̃v v′ V + ρ̃v w′ W

)]

+
1

r

∂

∂φ

(
ρwK + ρ̃w u′ U + ρ̃w v′ V + ρ̃w w′ W

)

+ U P x + V P r +
W

r
Pφ

− Uxρ̃u u′ − V xρ̃u v′ −W xρ̃uw′ − Urρ̃v u′

− V rρ̃v v′ −W rρ̃v w′ −
1

r
Uφρ̃w u′ −

1

r
V φρ̃w v′

−
1

r
Wφρ̃w w′ −

1

r
V ρ̃w w′ +

1

r
W ρ̃w v′

=
1

Re

[
∆K −

(
U ix
)2

−
(
U ir
)2

−
1

r2
(
U iφ

)2

−
V

r2
(
V + 2Wφ

)
−
W

r2
(
W − 2V φ

)
]

(26)

+
1

3Re

[
U(∇ · V )x + V (∇ · V )r +

W

r
(∇ · V )φ

]
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where (U ix)
2 = (Ux)

2 +(V x)
2 +(W x)

2 and similarly for
(U ir)

2 and (U iφ)
2.

Large-scale kinetic energy equation

The large-scale kinetic energy equation is often obtained
by multiplying each disturbance momentum equation by
its corresponding disturbance velocity and then adding the
three equations. This process was used when shape as-
sumptions were based on using locally-parallel, stability
calculation results. With LEE, we obtain disturbance vari-
ables that are complex. In anticipation of using these
complex values, we develop the large-scale kinetic energy
equation by multiplying each disturbance momentum equa-
tion by the corresponding conjugate disturbance velocity
and then adding the conjugate, that is, for the x-momentum
equation:

u′∗(x-mom.) + u′(x-mom.)∗ (27)

Similar equations are derived using the r-momentum equa-
tion and the φ-momentum equation. After adding these
equations together, manipulating extensively, and applying
a time-average, the resulting kinetic energy equation for the
large-scale structures is

∂

∂x
(2ρuQ) +

1

r

∂

∂r
(2rρv Q) +

1

r

∂

∂φ
(2ρwQ)

+ u′∗p′x + v′∗p′r +
w′∗p′φ
r

+ u′∗ρ̃u Ux + u′∗ρ̃v Ur +
u′∗ρ̃w

r
Uφ

+ v′∗ρ̃u V x + v′∗ρ̃v V r +
v′∗ρ̃w

r
V φ

+ w′∗ρ̃uW x + w′∗ρ̃v W r +
w′∗ρ̃w

r
Wφ

+
w′∗ρ̃w

r
V +

v′∗ρ̃w

r
W + cc+ ht

=
1

Re

[
∆2Q− u′∗ixu

′

ix − u′∗iru
′

ir −
u′∗iφu

′

iφ

r2
(28)

−
v′∗

r2
(v′ + 2w′

φ) −
w′∗

r2
(w′ − 2v′φ) + cc

]

+
1

3Re

[
u′∗(∇ · v′)x + v′∗(∇ · v′)r

+
w′∗

r
(∇ · v′)φ + cc

]

whereQ = (|u′|2+|v′|2+|w′|2)/2, cc denotes the complex
conjugate of the preceding complex terms, and ht denotes
higher order terms containing the product of three or more
disturbance variables.

When the shape assumption given by equation (8) is ap-
plied in equation (28), the axial derivatives will decompose

into two terms; one for the derivative of the amplitude func-
tion A(x) and one for the derivative of the phase function
ψ(x). Thus, an additional equation is required to describe
the axial evolution of the phase. Following Lee & Liu,12

this is obtained by first subtracting the momentum equa-
tions, rather than adding as in equation (27),

u′∗(x-mom.) − u′(x-mom.)∗ (29)

This equation and the additional two equations for the r-
and φ-momentum equations are added together and exten-
sively manipulated. The resulting equation is more com-
plicated than equation (28) and will not be given. Only the
final integrated equation will be given below.

INTEGRAL FORM OF THE ENERGY EQUATION
For the round jet, the mean quantities are assumed to

be axisymmetric. Thus, W = 0 and ∂( )/∂φ = 0. The
energy equations (26) and (28) for the mean flow and the
large-scale structures, respectively, are simplified as these
terms are removed. Then, the usual boundary-layer-type
approximations are applied to the mean quantities. The
mean radial velocity is much less than the mean axial ve-
locity, V � U , and the axial gradients are much less than
the radial gradients, ∂( )/∂x� ∂( )/∂r. Using these ap-
proximations and considering the number of disturbance
variables in each term, the terms are ordered in size and
those terms up to second order are retained. The mean flow
pressure is then assumed to be constant across the jet. Fi-
nally, multiplying by r and integrating over r, the integral
form of the mean energy equation reduces to the following
simple form.

d

dx

∫
∞

0

(
1

2
ρuU

2
+ ρ̃uu′ U

)
rdr

=

∫
∞

0

ρ̃uu′ Uxrdr +

∫
∞

0

ρ̃vu′ Urrdr

+

∫
∞

0

ρ v′v′ V rrdr +

∫
∞

0

ρV w′w′dr

−
1

Re

∫
∞

0

(Ur)
2rdr (30)

Similarly, the energy equation for the large-scale struc-
ture component reduces to:

d

dx

∫
∞

0

(2ρU Q)rdr =

−

∫
∞

0

(
u′∗p′x + v′∗p′r +

w′∗p′φ
r

+ cc

)
rdr

−

∫
∞

0

(
u′∗ρ̃u Ux + u′∗ρ̃v Ur + cc

)
rdr

−

∫
∞

0

(
ρ v′∗v′ V r +

ρw′∗w′

r
V + cc

)
rdr
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−
1

Re

∫
∞

0

[
u′∗ixu

′

ix + u′∗iru
′

ir +
u′∗iφu

′

iφ

r2
(31)

+
v′∗

r2
(v′ + 2w′

φ) +
w′∗

r2
(w′ − 2v′φ) + cc

]
rdr

+
1

3Re

∫
∞

0

[
u′∗(∇ · v′)x + v′∗(∇ · v′)r

+
w′∗

r
(∇ · v′)φ + cc

]
rdr

In this equation, terms to second order are retained and
those terms involving the second derivative with respect
to x are neglected. For terms higher than second order,
the time-average is zero when using the shape assumption,
equation (8).

The physical interpretation of the terms appearing in the
energy equations is obvious. For the mean flow equation,
the first term on the left side is the mean flow advection
of the mean flow kinetic energy, the second term involves
energy transfer. The first four terms on the right-hand side
of (30) govern the energy transfer from the mean flow to
the coherent structure, and the last term is the viscous dis-
sipation of the mean flow energy. As for the large-scale
equation (31); the left-hand side is the mean flow advec-
tion of the large-scale kinetic energy. The first term on the
right-hand side is the work done by the large-scale pressure
gradients, the next two terms are the energy transfer from
the mean flow to the large-scale structures, and the last two
terms are the large-scale energy dissipation.

When substituting the mode definitions into equation
(30) for the mean energy, we will assume that the distur-
bances are real. Hence, each disturbance variable is rep-
resented by equation (8) plus its complex conjugate. The
time-averaging process results in the following ordinary
differential equation.

dθ

dx

dIam
dθ

+
d

dx

[
A2Iat

]
= A2Imwt −

1

Re
Imd (32)

In this analysis, the mean flow is characterized by the mo-
mentum thickness rather than by the axial distance. Hence,
the integrals in the energy equations are dependent on θ
instead of x.

For both the large-scale energy equation (31) and the
phase equation, the disturbance variables are used in their
complex form as given in equation (8). The resulting ordi-
nary differential equations are:

d

dx

[
A2Iaw

]
+
dA2

dx
Ip1b −A2 dψ

dx
2Iwp1a (33)

= A2

(
−Imwt − Ipt −

1

Re
Iwd −

1

3Re
Iwc

)

and

1

2

dA2

dx
Iwp1b +A2 dψ

dx
[Iaw + Ip1] (34)

= A2 (ωIf + Ipht − Iwpt)

All the integral terms in equations (32) to (34) are given
in the Appendix. Note that unlike in the previous paper,4

all the energy transfer integrals appearing in equation (32),
represented by Imwt, appear identically in equation (33)
with opposite sign, as expected.

NUMERICAL RESULTS
The calculations were performed for three, perfectly ex-

panded jets with exit Mach numbers of 1.5, 1.8, and 2.1.
In all cases, the jets were cold with the jet exit total tem-
perature equal to the ambient temperature. The mean flow
was computed using the parabolized, boundary-layer pro-
cedure of Dahl & Morris13 with the addition that the radial
velocity profile was computed from the mean continuity
equation. This procedure generated mean flow profiles that
smoothly transition from the initial region to the fully de-
veloped region allowing complete parameterization by the
momentum thickness, θ, as required by the nonlinear anal-
ysis.

The mean flow was used in the Linearized Euler Equa-
tion (LEE) solver described in a previous section. The
time-domain solver was run until initial transients ended.
The unsteady disturbance flow field was then stored at con-
stant time intervals creating time histories of all the com-
puted unsteady flow variables at each grid point of the flow
field. The time interval corresponds to 1/8th of the period
for the frequency used for the inflow disturbance. In our
calculations here, the frequency corresponds to a Strouhal
number fD/Uj = 0.2 and n = 1 for the azimuthal mode
number. An example of the computed pressure disturbance
field is shown in Figure 1. The pressure disturbance con-
tours exhibit a growth and decay behavior within the jet and
a radiation directivity characteristic outside of the jet. The
pressure disturbance also decays with distance away from
the jet. These results are typical for all three computed jets.

The set of disturbance flow fields from the LEE cal-
culations were post-processed to provide the data for the
nonlinear integral calculations. After taking the Fourier
Transform in time to obtain the complex amplitude of each
unsteady flow variable at each grid point, the data were
normalized according to equation (9) to obtain the radial
shape functions for each variable. The radial shape func-
tions are then used to compute the integrals that appear in
equations (32) to (34), the set of coupled ordinary differ-
ential equations for the mean flow momentum thickness θ,
the disturbance variable amplitude A2, and the disturbance
variable axial phase function ψ. Since the integrals are con-
sidered to be functions of θ, interpolations were made of
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Fig. 1 LEE computed pressure disturbance field. Mj = 2.1;
fD/Uj = 0.2; n = 1.

these integral functions during the solution of the differen-
tial equations. The differential equations were manipulated
to form three first-order, coupled, initial-value differential
equations that were solved by implementing a degree-1
Taylor series scheme with fixed point iteration.14 Only the
choice of the initial amplitude was needed to start the inte-
gration at x = 0. The initial value for θ was given by the
mean flow calculations and the initial value for the phase
function ψ was set to zero. Any nonzero initial value for
ψ merely offset all the results for ψ by that initial nonzero
value.

Effect of Re

The differential equations contain a Reynolds num-
ber that comes from the normalized Navier-Stokes equa-
tions. Obviously the Euler equations are inviscid, hence
the Reynolds number must be provided by the underlying
mean flow. Solutions for the amplitude function are shown
for the Mj = 1.8 jet in Figure 2 for two different ini-
tial amplitudes, A2

o = 10−7 and A2
o = 10−3. Given that

we consider the jets to be high-Reynolds number turbu-
lent jets, the high constant Reynolds number results show
growth but very little decay for the amplitude. If we con-
sider the viscosity to be a turbulent viscosity, as in Tam &
Chen,15 and choose a smaller constant Reynolds number,
we see that significant ’early’ decay does not begin until
the Reynolds number is getting relatively small. To avoid
the arbitrary choice of a Reynolds number, we follow our
previous procedure by choosing a local variable Reynolds
number obtained from the mean flow calculations.4 This
is a simple way to mimic the increased effects of fine-
scale turbulence on dissipating the energy in the large-scale
turbulence as the large structure moves downstream. The
amplitude results using the variable Re approach is also
shown in Figure 2.

Local energy integrals

The four integral terms in equation (32) govern the ad-
vection, transfer, and dissipation of the mean kinetic en-
ergy. Using the data computed by the LEE code, these
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Fig. 2 Amplitude function comparisons showing effects of
Reynolds number. Mj = 1.8; fD/Uj = 0.2; n = 1.
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Fig. 3 Energy integrals from the mean flow energy equation
(32). fD/Uj = 0.2; n = 1.

integrals are computed using the trapezoidal rule and the re-
sults are plotted in Figure 3 for the three jet Mach numbers.
Due to the transient waves present near the inflow bound-
ary, the integral calculations were started at θ/D = 0.035.
As functions of θ, the two integrals that depend solely on
the mean flow, Iam and Imd, are nearly identical for the
three jets. The integral Iam represents the advection of the
mean flow kinetic energy. The rate of change of Iam is
initially constant and then gradually decreases. The energy
moves downstream as the jet spreads and then the advection
slows downstream of the potential core. The Imd integral
represents viscous dissipation of the mean kinetic energy.
It starts out initially high due to the high radial gradients of
the axial mean velocity. It steadily decreases in value as the
flow proceeds downstream.

The Imwt integral governs the main transfer of energy
from the mean flow to the large-scale structures. It is en-
tirely negative as the jet evolves, indicating that energy
is only transferred from the mean flow to the large-scale
structures and not the reverse. Its magnitude is largest
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Fig. 4 Comparison of energy transfer integrals. Imw1 is
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for the lowest Mach number and it decreases as the Mach
number increases becoming a less efficient energy trans-
fer process. In the current derivation, Imwt consists of the
sum of six terms, the largest, Imw1, has the classical form
for the velocity-shear driven generation of the large-scale
structures (See Appendix). To various degrees, the addi-
tional terms add effects of compressibility and non-parallel
flow to the energy transfer process. As can be seen in
Figure 4, these additional integrals add little to the total
energy transfer integral in these cold, slowly diverging jets.
The waviness seen in the initial part of the plots of Imwt
in Figure 3 are remnants of the problems with the inflow
boundary condition.

The only way to possibly transfer energy from the large-
scale structures back to the mean flow is via the Iat integral.
The general behavior of Iat is to increase to a maximum
value and then decrease downstream. The initial positive
gradient is indicative of energy transfer towards the large-
scale structures. After the peak and the gradient becomes
negative, then some energy can be transferred from the
large-scale structures to the mean flow. Both the magni-
tude and the gradients each side of the peak increase as the
Mach number increased.

Figure 5 shows four of the dominant integral terms in
equation (33) governing the kinetic energy in the large-
scale structures. The integral for the advection of the large-
scale kinetic energy, Iaw, increases as the energy flows in
from the mean flow. Once dissipating mechanisms take
over, the integral decreases in value. The lower values of
Iaw as Mach number increases corresponds to the lower
levels of incoming energy from the higher mean flows.
The large-scale energy decreases as Iwd, the dissipation
integral, increases. The remaining two integrals shown
represent work done by the large-scale structure pressure
gradients; Ip1 represents work done by the axial pressure
gradients and Ipt represents work done by both the radial
and the azimuthal pressure gradients. Both integrals are
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Fig. 5 Energy integrals from the large-scale structure energy
equation (33). fD/Uj = 0.2; n = 1.

relatively small in magnitude. These integrals are the only
ones using the pressure disturbance and their behavior at
the computed flow field exit indicates the presence of re-
flections from the outflow boundary.

Nonlinear amplitude
The results for the computed amplitude function for the

jet with Mach number 1.8 are shown in Figure 6. The ini-
tial amplitude A2

o varies from 10−7 to 10−1. Part (a) shows
the absolute value of the amplitude and part (b) shows the
amplitude normalized by the initial amplitude. Notice that
when the amplitude is normalized, the A2

o = 10−7 and
10−6 plots are basically identical. This indicates a linear
response. The amplitude function changed by the same
amount as the change in the initial amplitude. The nor-
malized plot for A2

o = 10−5 begins to deviate from the
previous normalized plots at about x/D = 10. In part (a),
it is seen that the A2

o = 10−5 plot is exceeding approxi-
mately 10−3 at that location. This pattern holds for higher
initial amplitudes indicating an amplitude threshold above
which nonlinear effects take place. At the initial amplitude
of 10−1, growth has nearly ceased and single frequency
saturation starts to occur.16

Using initial amplitudes of 10−2 and 10−7 to generate
nonlinear and linear responses, respectively, for the ampli-
tude function, Figure 7 shows comparisons for the three jet
Mach numbers. The amplitude of the linear response grows
in amplitude as the Mach number increases. As the ini-
tial amplitude increases and nonlinear effects become more
important, the Mach number has very little effect on the
maximum large-scale structure amplitude.

The energy integral equations also compute the change
in mean flow momentum thickness and large-scale struc-
ture phase function. Results are shown in Figure 8. Part (a)
shows that the momentum thickness remains unchanged for
small initial amplitudes. It is through the nonlinear process
that the momentum thickness increases at the higher am-
plitudes until saturation. In part (b), the momentum thick-

9NASA/TM—2003-212383



10
-8

10
-6

10
-4

10
-2

10
0

A
2

10
-1

10
-2

10
-3

10
-4

10
-5

10
-6

10
-7

0 5 10 15 20 25 30 35
x/D

10
-1

10
0

10
1

10
2

10
3

A
2 /A

o2

A
o

2

(a)

(b)

Fig. 6 Amplitude function comparisons with different initial
amplitudes. (a) Absolute amplitude. (b) Amplitude normal-
ized by initial amplitude. Mj = 1.8; fD/Uj = 0.2; n = 1.

0 5 10 15 20 25 30 35
x/D

10
-1

10
0

10
1

10
2

10
3

A
2 /A

o2

Nonlinear
Linear

M
j
 = 1.5

1.8
2.1 1.5 1.8 2.1

Fig. 7 Amplitude function comparisons between nonlinear
and linear calculations at different Mach numbers. Non-
linear: A

2
o = 10

−2. Linear: A
2
o = 10

−7. fD/Uj = 0.2;
n = 1.

ness decreases downstream as the Mach number increases
where initially the behavior of the momentum thickness
is similar for all three jets. Finally, the phase function is
plotted in part (c) as a phase speed for the large-scale struc-
ture. Nonlinearity has the effect of a rapid increase in phase
speed near the nozzle exit compared to the gradual change
in phase speed seen in the linear case.

CONCLUDING REMARKS
The Linearized Euler Equation method, with given non-

parallel mean flow, has been used to compute the large-
scale turbulent structures. Normalized radial functions
were derived from this data to be used in the energy integral
method that describes the weakly nonlinear interactions of
a growing large-scale structure with the mean flow. Below
some initial amplitude threshold, the evolving disturbances
behave linearly. Above that threshold, the amplitude of the
disturbance peaks and decays earlier in axial location com-
pared to the linear response. These results were also shown
to be highly dependent on the dissipation model used for
the large-scale structures.
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APPENDIX

< = Real Part = = Imaginary Part

Iam =
1

2

∫
∞

0

ρU
3
r dr Imd =

∫
∞

0

(
∂U

∂r

)2

r dr

Iat =

∫
∞

0

[
3<{û∗ρ̂}U

2
+ 2|û|2ρU

]
r dr

Imwt = Imw1 + Imw3 + Imw4 + Imw5 + Imw6 + Imw7

Imw1 = 2

∫
∞

0

<{v̂∗û}ρ
∂U

∂r
r dr

Imw3 = 2

∫
∞

0

<{û∗ρ̂}V
∂U

∂r
r dr

Imw4 = 2

∫
∞

0

<{û∗ρ̂}U
∂U

∂x
r dr

Imw5 = 2

∫
∞

0

|û|2ρ
∂U

∂x
r dr

Imw6 = 2

∫
∞

0

|v̂|2ρ
∂V

∂r
r dr Imw7 = 2

∫
∞

0

|ŵ|2ρ V dr

Iaw =

∫
∞

0

(
|û|2 + |v̂|2 + |ŵ|2

)
ρUr dr

Ip1b = Ip1 +
1

3Re
Iwca Iwp1a = Iwp1 −

1

6Re
Iwcp

Ip1 =

∫
∞

0

<{û∗p̂}r dr Iwp1 =

∫
∞

0

={û∗p̂}r dr

Iwca =

∫
∞

0

[(
<

{
v̂∗
∂û

∂r

}
+ <

{
û∗
∂v̂

∂r

})
r + <{v̂∗û}

]
dr

Iwcp =

∫
∞

0

[
2

(
=

{
v̂∗
∂û

∂r

}
+ =

{
û∗
∂v̂

∂r

})
r

− ={v̂∗û} + 2n<{û∗ŵ}

]
dr

Ipt = 2

∫
∞

0

[
<

{
v̂∗
∂p̂

∂r

}
− n={ŵ∗p̂}

]
dr

Iwd = 2

∫
∞

0

[
n2

r2
(
|û|2 + |v̂|2 + |ŵ|2

)

+
1

r2
(
|v̂|2 + |ŵ|2

)
−

4n

r2
={v̂∗ŵ}

+

(∣∣∣∣
∂û

∂r

∣∣∣∣
2

+

∣∣∣∣
∂v̂

∂r

∣∣∣∣
2

+

∣∣∣∣
∂ŵ

∂r

∣∣∣∣
2
)]

r dr

I
wc = 2

∫
∞

0

[(∣∣∣∣
∂v̂

∂r

∣∣∣∣
2

+
n2

r2
|ŵ|2 +

1

r2
|v̂|2 −

2n

r2
={v̂∗ŵ}

)
r

+ n

(
=

{
v̂∗
∂ŵ

∂r

}
+ =

{
ŵ∗

∂v̂

∂r

})]
dr

Iwp1b = Iwp1 −
2

3Re
Imp

Imp =

∫
∞

0

[
=

{
v̂∗
∂û

∂r

}
r + n<{û∗ŵ}

]
dr

If =

∫
∞

0

(
|û|2 + |v̂|2 + |ŵ|2

)
ρ r dr

Iwpt =

∫
∞

0

[
=

{
v̂∗
∂p̂

∂r

}
r + n<{ŵ∗p̂}

]
dr

Ipht = Iph1 − Iph2 − Iph3 − Iph4 − Iph5 − Iph6 − Iph7

Iph1 =

∫
∞

0

={v̂∗û}ρ
∂U

∂r
r dr

I
ph2 =

∫
∞

0

[
=

{
û∗
∂û

∂r

}
+ =

{
v̂∗
∂v̂

∂r

}
+ =

{
ŵ∗

∂ŵ

∂r

}]
ρV r dr

Iph3 =

∫
∞

0

={û∗ρ̂}V
∂U

∂r
r dr

Iph4 =

∫
∞

0

={û∗ρ̂}U
∂U

∂x
r dr

Iph5 =

∫
∞

0

={v̂∗ρ̂}U
∂V

∂x
r dr

Iph6 =

∫
∞

0

={v̂∗û}ρ
∂V

∂x
r dr

Iph7 =

∫
∞

0

={v̂∗ρ̂}V
∂V

∂r
r dr
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